Internet of Energy
Degree programme | Sustainable Energy Systems |
Subject area | Engineering Technology |
Type of degree | Master part-time |
Type of course unit (compulsory, optional) | Compulsory |
Course unit code | 072722030301 |
Teaching units | 30 |
Year of study | 2025 |
Name of lecturer(s) | Michael HIRSCHBICHLER |
None
The course will focus on information and communication technologies (ICT) for the acquisition, processing and visualisation of data in a regenerative and networked energy system.
- Collection, storage, processing and communication of data at the field level (smart metering)
- Wired and non-wired communication technologies, e.g. field bus systems, radio networks, fiber optic networks as well as Internet and Powerline
- Digital platforms for the network operator (network control systems), industry and commerce (energy management systems) and prosumer (smart home)
- Data security and critical infrastructures
- Scenarios and migration paths for the Internet of Energy
At the end of this course, students are familiar with typical information and communication technologies (ICT) and their application in distributed, digitized energy systems. They can record possible paths to the Internet of Energy, i.e. to digitalisation. They can identify and classify the potentials and challenges with regard to the digitisation of the energy system. The students know
- Typical ICT for the acquisition, transmission and processing of information in regenerative decentralised energy systems. They can describe them in a control level model and compare them.
- ICT and its system interrelationships in detail for an example application (e.g., electromobility).
- Digital platforms for operators of energy networks (network control systems), industry and commerce (energy management systems) and prosumers (smart home). They can describe technology and function as well as identify and classify potentials and risks.
- the legal basis for data security. They can also describe and classify the effects with regard to the digitisation of critical energy supply infrastructures.
- Lectures
- Discussions
- Exercises
- Field trips
- Presentation (25%) and
- a written or oral exam (75%)
For a positive grade, a minimum of 50% of the possible points must be achieved across all parts of the examination.
None
- Servatius, Hans-Gerd; Schneidewind, Uwe; Rohlfing, Dirk (Hrsg.) (2012): Smart energy: Wandel zu einem nachhaltigen Energiesystem. Heidelberg: Springer.
- Faseth, E. M. (2003): „Die Herausforderungen der dezentralen/erneuerbaren Energieerzeugung für Leittechnik und Automatisierungstechnik.“ In: e & i Elektrotechnik und Informationstechnik, 120 (2003), 10, S. 342–345. Online im Internet: DOI: 10.1007/BF03054804 (Zugriff am: 23.09.2019).
- Jagstaidt, Ullrich C. C.; Kossahl, Janis; Kolbe, Lutz M. (2011): „Smart Metering Information Management.“ In: Business & Information Systems Engineering, 3 (2011), 5, S. 323–326. Online im Internet: DOI: 10.1007/s12599-011-0173-5 (Zugriff am: 01.08.2019).
- Kabalci, Yasin (2016): „A survey on smart metering and smart grid communication.“ In: Renewable and Sustainable Energy Reviews, 57 (2016), S. 302–318. Online im Internet: DOI: 10.1016/j.rser.2015.12.114 (Zugriff am: 23.09.2019).
- Muhanji, Steffi O.; Flint, Alison E.; Farid, Amro M. (2019): eIoT: The Development of the Energy Internet of Things in Energy Infrastructure. Cham: Springer International Publishing. Online im Internet: DOI: 10.1007/978-3-030-10427-6 (Zugriff am: 23.09.2019).
- Niederhausen, Herbert; Burkert, Andreas (2014): Elektrischer Strom: Gestehung, Übertragung, Verteilung, Speicherung und Nutzung elektrischer Energie im Kontext der Energiewende. Wiesbaden: Springer Vieweg.
Presence course