Focus Electronic Engineering
Degree programme | Mechatronics |
Subject area | Engineering & Technology |
Type of degree | Bachelor Full-time Winter Semester 2024 |
Course unit title | Focus Electronic Engineering |
Course unit code | 024515055101 |
Language of instruction | English |
Type of course unit (compulsory, optional) | Compulsory optional |
Teaching hours per week | 8 |
Year of study | 2024 |
Level of the course / module according to the curriculum | |
Number of ECTS credits allocated | 18 |
Name of lecturer(s) | Robert AMANN, Michael BÖHNEL, Clemens MAIER, Alfred MANDL, André MITTERBACHER, Horatiu O. PILSAN, Reinhard SCHNEIDER, Jessica VANDER STOEP |
- Analysis of electronic circuits with passive components (R, L, C) and active components (transistors, operational amplifiers)
- Selection and dimensioning of electronic circuits
- Working with data sheets (electronic components, microprocessors)
- Measurements on electronic circuits with multimeter and oscilloscope
- Basic knowledge of structured programming
- Basic knowledge of the mode of operation of microprocessor systems
- Basic knowledge of the mode of operation of microcontroller peripherals
(e.g. serial interface, timer/counter, A/D converter) - Basic knowledge of the C programming language (ability to solve a problem autonomously by implementing a program using microcontroller peripherals)
- Requirements analysis: determining requirements, documenting requirements, checking and reconciling requirements, requirements management, systems development life cycle, SysML
- Programmable Logic Controllers: automation pyramid, PLC versus microcontrollers, PLC versus soft PLC, function of a controller, introduction to IEC61131-3, applications, security
- Practical aspects: industrial volume products, standards, risk analysis (FMEA), thermal management, protection circuits, EMC - design guidelines, reliability
- E-CAD and E-manufacturing: electronic systems and components, methods for describing electronic systems and components, packaging, tools (overview), types of circuit, information coding, measurement circuits, communication, digital interfaces, signal interfaces, circuit design and PCB layout, manufacturing and assembly of electronic components.
- The students can determine and document requirements.
- The students can program a sequence control in the PLC programming language Structured Text.
- The students can describe the process of risk analysis.
- The students can apply selected best practices and design guidelines for thermal management, protection circuits, EMC and further selected topics.
- The students can read and apply data sheets and application notes for electronic circuits.
- The students are able to design simple circuits for power electronics (H-bridge) and measurement technology (instrument amplifier).
- The students are able to design PCB prototypes considering the most important layout design rules.
- The students can program a microcontroller (digital IO, ADC, SPI communication, UART communication).
Lectures, project work, coaching sessions
written examination (40%, must be passed)
project results, specification, technical documentation (60%, must be passed)
None
- Clements, Alan (2006): Principles of Computer Hardware. 4. Auflage. Oxford: Oxford University Press.
- Microchip Corporation (2013): Application Note Atmel AT03665: ASF Manual (SAM D20). Online: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42139-ASF-Manual-SAM-D20_Application-Note_AT03665.pdf (accessed: 25.03.2021).
- John, Karl-Heinz; Tiegelkamp, Michael (2010): IEC 61131-3: Programming Industrial Automation Systems: Concepts and Programming Languages, Requirements for Programming Systems, Decision-Making Aids. Berlin Heidelberg: Springer-Verlag.
- Demant, Christian; Streicher-Abel, Bernd; Garnica, Carsten (2013): Industrial Image Processing: Visual Quality Control in Manufacturing. Berlin: Springer.
- Karolina Zmitrowicz (2014): Requirements Engineering. Online: https://leanpub.com/requirements-engineering (accessed: 25.03.2021)
Face-to-face